ColabFoldΒΆ
Easy to use protein structure and complex prediction using AlphaFold2 and Alphafold2-multimer.
Local ColabFold is made available on the cluster as a shared Apptainer container image. This should be run on a GPU Compute partition.
You can use the apptainer/colabfold
module which will add convenient aliases for: colabfold_batch
,
colabfold_search
, colabfold_split_msas
, which will run within the container;
The alias will also bind-mount the AlphaFold2 weights cache path (/opt/colabfold/alpha2_weights_cache
on the nodes) into
the container on /cache
.
See the LocalColabFold documentation for usage information. Example:
Terminal
module load apptainer/colabfold
# The following is required to use aliases in a non-interactive/SLURM batch script:
shopt -s expand_aliases
colabfold_batch ./input.fasta ./out/
An example Slurm script to run ColabFold on the cluster is provided below:
Terminal
#!/bin/bash
#SBATCH --job-name=colabfold # Job name
#SBATCH --partition=aoraki_gpu # Partition (queue) name
#SBATCH --nodes=1 # Number of nodes
#SBATCH --ntasks-per-node=1 # Number of tasks (1 task per node)
#SBATCH --cpus-per-task=12 # Number of CPU cores per task
#SBATCH --gres=gpu:1 # Number of GPUs required
#SBATCH --mem=96G # Job memory request
#SBATCH --time=10:00:00 # Time limit hrs:min:sec
#SBATCH --mail-user=USERNAME@otago.ac.nz
#SBATCH --output=colabfold%j.log # Standard output log
# Set variables
base_name="$1"
output_fasta="${base_name}_getorf.output.fa"
# Load the apptainer/colabfold module (assuming it's in your PATH)
module load apptainer/colabfold
shopt -s expand_aliases # Enable alias expansion
# Check loaded modules (for debugging)
module list
# Ensure PATH includes module binaries (for debugging)
echo "Current PATH: $PATH"
# Run colabfold_batch command using alias
colabfold_batch "./$output_fasta" ./out/