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Fold changes
Di8erential  expression (i.e.,  a change in gene activitation level)  is
often reported as a fold change in activity.

Often the  scale is used (i.e., log fold change).

Initially,  genes with fold changes greater than 2 ( )  or
less than 1/2 ( ) were considered to have undergone
di8erential expression.

·

· log2

· lo (2) = 1g2
lo ( ) = −1g2
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Detecting changes in expression
In order to determine whether a gene has undergone di8erential
expression  between  two  conditions,  multiple  observations  are
generally required. Note: In reality, all we can determine is whether
the probes which represent a gene, exhibit consistent changes in
intensity.
Assuming that we have multiple intensity measurements for a gene
under  each  condition,  basic  statistical  methods  can  be  used  to
answer this question.

·

·
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Determining differential expression
We are investigating di8erences in gene expression between two
strains of yeast (WT and MT)
We have three replicates of the WT samples and three replicates of
the MT samples (6 RNA-seq samples in total).
For each gene this gives:

·

·

·

Treatment 1 (WT): 

Treatment 2 (MT): 

- , ,x11 x12 x13

- , ,x21 x22 x23
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Determining differential expression
If we assume that all experimental artifacts have been removed by
the  normalization  process,  we  conclude  that  any  remaining
di8erences in intensity are result of di8erences in expression level.
To test this, we can conduct a formal hypothesis test (for each gene)
to determine whether the mean intensity changed between the WT
and MT samples.
Since most basic statistical tests are set up to provide answers on
the additive scale, and fold changes are on the multiplicative scale,
we generally take logs of the data.

·

·

·
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Hypothesis testing
In statistics, we think of our sample means as providing estimates
of the underlying (true) population means for each gene,  and .

For  each  gene,  we  want  to  test  the  following  null  hypothesis:
 against the alternative hypothesis: 

If we reject the null hypothesis for a particular gene, we think that
gene is likely to be di8erentially expressed.

·
μ1 μ2

·
: =H0 μ1 μ2 : ≠HA μ1 μ2

·
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Hypothesis testing
In order to conduct the hypothesis test, we need a test statistic. The
most simple approach is to utilize the test statistic of the standard
t-test:

where  and  are the sample means of the data, and 
is some appropriate measure of variability (in this case the standard
error).
Various choices are possible for the denominator depending on the
structure of the data.

·

T =
−μ1̂ μ2̂

SE( − )μ1̂ μ2̂

μ̂1 μ̂2 SE( − )μ̂1 μ̂2

·
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P-values
Once  we  have  calculated  a  gene-speci[c  test  statistic  (e.g.,  a
t-statistic in our simple example), we calculate a p-value for each
gene, .

The p-value represents the probability of observing this (or a more
extreme) result, if no di8erential expression occurred. (i.e., what is
the chance we are just observing noise?)

We reject   (i.e.,  say  gene  is  di8erentially  expressed)  if   is
small.
Question: what does small mean?

·

pk

·

· H0k k pk

·
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P-values
We have to decide how small a p-value needs to be for us to think
that the di8erence we are observing cannot be explained solely by
noise.
When we test a single hypothesis, it is common to [x a Type I error
rate of = 0.05 or  = 0.01.

Type I error: reject null hypothesis when it is true (i.e., say a gene is
di8erentially expressed when it really isn't).
Type II error: fail to reject the null hypothesis when it is false (i.e.,
say a gene is not di8erentially expressed when it really is).

·

·
α α

·

·
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Type I errors

1000 TYPE I ERRORS!

Using a Type I error rate of = 0.05 means that we are willing to
make a Type I error in 5% of our hypothesis tests (i.e., 5% of the
time that the null hypothesis is true, we will say that it's false).
So for every 20 hypothesis tests we perform, on average we expect
1 Type I error.
What if we are performing 20,000 hypothesis tests?

· α

·

·
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Adjusting the  levelα
Obviously using an  level of 0.05 (or even 0.01) is not suitable when
testing large numbers of hypotheses.
To  get  around  this  problem  we  use  Multiple  Comparison
Procedures (MCPs).
MCPs provide error rate control, allowing us to keep a lid on how
many Type I errors we make.

· α

·

·
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Family-wise error rate control
Control  of  the  family-wise  error  rate  (FWER)  is  very  common  in
multiple testing problems.

MCPs which control the FWER guarantee that the FWER , where
a "family-wise error"  is  de[ned to be the occurrence of  a  single
Type I error in the entire family (set) of hypotheses being tested.
In  an  RNA-seq  experiment  we  test  each  gene  for  di8erential
expression,  so  there  are  as  many  hypothesis  tests  as  there  are
genes.
The Bonferroni and Holm procedures both provide control of the
FWER.

·

· < α

·

·
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What's so great about FWER control?
Advantage:  FWER  controlling  procedures  provide  a  high  level  of
certainty  in  your  result.  The  null  hypotheses  rejected  by  these
procedures are very unlikely to be true (i.e., all of the rejected null
hypotheses are likely to be correct rejections).
Disadvantages: This level of control is very conservative - it is likely
that  some  genes  undergo  di8erential  expression,  but  their  null
hypotheses are not rejected. As the number of hypotheses being
tested  becomes  very  large,  the  signi[cance  threshold  becomes
extremely small.

·

·
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What is the alternative?
Continue to control the FWER, but use a larger value?
Switch to a di8erent error rate?
What other error rates exist? (not many...)

·
·
·
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False Discovery Rate control
The  False  Discovery  Rate  was  introduced  by  Benjamini  and
Hochberg (1995 - JRSS(B)).
Provides a less conservative approach to error  rate control  than
FWER controlling procedures.
Greater power comes at the cost of an increased likelihood of Type
I errors.
Has  become  very  popular  in  genomic  analysis,  plus  astronomy,
brain imaging, and genetics (all test large numbers of hypotheses).

·

·

·

·
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Error rate control
FWER control is concerned with making sure that the probability of
a single testing error is small.
FDR control  in  concerned with  keeping the proportion of  Type I
errors out of the total number of rejected hypotheses small.

·

·

This value can be anything from 0 to 1.-
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FDR control versus FWER control
FDR controlling procedures provide more error rate protection than
not adjusting at all, but are a lot more likely to make Type I errors
than FWER controlling procedures.
The  jip  side  is  that  FDR controlling  methods  are  more  likely  to
reject false null hypotheses (i.e., they achieve greater power).

·

·
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Comparing approaches

TEST NUMBER P-VALUE BONFERRONI HOLM FDR

1 0.002 0.016 0.016 0.0160

2 0.004 0.032 0.028 0.0160

3 0.007 0.056 0.042 0.0187

4 0.010 0.080 0.050 0.0200

5 0.020 0.160 0.080 0.0320

6 0.030 0.240 0.090 0.0400

7 0.050 0.400 0.100 0.0571

8 0.080 0.640 0.100 0.0800

Instead of  adjusting the signi[ance threshold,  we can adjust  the
p-values themselves.
The  table  below  contains  unadjusted  p-values  ("P-value"),  and
p-values adjusted using the Bonferroni, Holm, and FDR methods.

For =0.05, the four approaches [nd 7, 2, 4, or 6 tests signi[cant.

·

·

· α
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Modification to t-test procedure
One  problem  with  the  t-statistic  approach  to  determining
signi[cance  is  that  some  genes  with  small,  but  consistent  fold
changes can end up with very large t-statistics.
This is especially common in genomics experiments involving only a
few samples.
Generally  feel  that  genes  with  small  fold  changes  shouldn't  be
considered as having undergone signi[cant di8erential expression.
Need a way to prevent these genes showing up as signi[cant.

·

·

·

·
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Significance Analysis for Microarrays (SAM)
Tusher et al. (2001) proposed a modi[cation to the denominator of
the t-statistic to reduce the injuence of tiny standard deviations.

Although  this  modi[cation  looks  somewhat  arbitrary,  it  can  be
derived  by  taking  a  Bayesian  approach  to  analysis  (and  various
other ways).

Tusher et al. (2001) chose  to minimize the coekcient of variation.

Other  authors  have  suggested  using  quantiles  of  the  underlying
empirical (observed) distribution of standard errors (much easier).

·

T =
−μ1̂ μ2̂

SE( − ) +μ1̂ μ2̂ s0

·

· s0

·
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Significance Analysis for Microarrays (SAM)
Has the e8ect  of  restricting  signi[cant  genes to  those exhibiting
large fold changes.
Although  the  distribution  of  T  is  unknown,  resampling  methods
(e.g.,  bootstrapping)  can  be  used  to  approximate  the  null
distribution, allowing calculation of p-values.
Multiple  comparison  procedures  can  then  be  used  to  provide
control of the Type I error rate (FWER or FDR).

·

·

·
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Detecting differential expression with limma
The limma  package takes a linear models approach to detecting
genes which have undergone di8erential expression.
After the data have been normalized, a linear model is [t to the
expression values to determine which genes underwent signi[cant
changes.
Although a standard t  statistic can be used to assess di8erential
expression, limma goes a little bit further...

·

·

·
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Empirical Bayes analysis
Limma uses Empirical Bayes methods to produce a modi[ed test
statistic.
The idea is similar to that employed by the SAM procedure, but is
more sophisticated, and has more solid mathematical foundations.
The goal is to modify the denominator of a standard t test statistic,
by making large standard errors smaller, and small standard errors
larger: this is known as shrinkage estimation.

·

·

·

gene-speci[c variances follow a standard distribution
When we see extreme values from this distribution, we would
like to moderate them, so that they don't have a major e8ect
on our results (i.e., want to make large standard errors smaller,
and small standard errors larger).
This has the e8ect of  pulling the extreme value towards the
centre of the observed distribution of gene-speci[c variances.

-
-

-
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Back to limma
Once limma has [t a linear model to the normalized data (using
lmFit), a second function (eBayes) is used to calculate moderated
t-statistics based on shrunken estimates of the per-gene variances.
The moderated t-statistics can be quite di8erent than the standard
t-statistics, especially for small sample sizes.
In  general,  the  moderated  t-statistics  make  it  more  likely  that
signi[cant genes will have a large fold change, and a small variance,
rather than a small fold-change and a tiny variance.

·

·

·
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Per-gene variance shrinkage

Example of per-gene standard deviation distributions for:

Limma approach illustrates "shrinkage" e8ect, with extreme values
"moderated" towards the centre of the distribution.

·
two-sample t-test
limma moderated t-test

-
-

·
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Determining differential expression
Because  of  the  mathematics  underpinning  the  empirical  Bayes
approach  the  moderated  t-statistics  still  follow  a  standard
t-distribution (unlike the SAM approach), with degrees of freedom
based on both the number of observations for each gene, and the
parameters of the underlying prior distribution.
This  allows  the  calculation  of  parametric  p-values,  to  which
standard multiple comparisons procedures can be applied.

·

·
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Background: linear models
Simple linear regression: 

Linear model equivalent: 

In linear regression,  and  are continuous variables. Here we have
 (gene expression) as continuous, but  (group) is discrete, so our

linear model is actually equivalent to ANOVA (analysis of variance).
For a single gene:

· y = mx + b

· = + +yi β0 β1xi ϵi

· x y
y x

·

 are our gene expression values

 is the group (GFP or MYC) for the  sample

 and  are the intercept and slope coekcients

 is the residual (or error) associated with obsevation  (the
di8erence between our predicted,  and observed, ,  values
that cannot be explained by the model).

- yi

- xi ith

- β0 β1

- ϵi yi
yî yi
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Background: linear algebra

Image from: https://onlinecourses.science.psu.edu/stat501/node/382

In practice, we represent our linear model in matrix form:

and use basic linear algebra to solve the equation and determine
the value of the coekcients.

·

Y = Xβ + ϵ
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Background: linear algebra
The solution that minimises the "sums of squared error":

is given by:

Why do we care?

·

= ( −∑
i=1

n

ϵ2
i ∑

i=1

n

yi yî)2

= (X′X X′Yβ̂ )−1

·

Because limma requires the design matrix, , to [t this model
per gene and estimate its probability of di8erential expression.

- X
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The design matrix
For  our  simple  two-group  di8erential  expression  analysis,  the
design matrix has two columns:

The  residuals  (the  's)  for  each  gene  are  used  to  determine
whether  the  observed  expression  di8erence  is  statisically
signi[cant.

·

the [rst is all ones, and relates to the intercept coekcient: it is
the average level of log-expression for the gene (remember the
linear model is [t to each gene, so we have an intercept and a
"slope" term per gene),
the second has zeroes for one group, and ones for the other,
and  relates  to  the  coekcient  for  group  ("slope"):  it  is  the
average di8erence in  log-expression between the groups for
that gene). This is what we are interested in.

-

-

· ϵi
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